Substrate-induced unlocking of the inner gate determines the catalytic efficiency of a neurotransmitter:sodium symporter.
نویسندگان
چکیده
Neurotransmitter:sodium symporters (NSSs) mediate reuptake of neurotransmitters from the synaptic cleft and are targets for several therapeutics and psychostimulants. The prokaryotic NSS homologue, LeuT, represents a principal structural model for Na(+)-coupled transport catalyzed by these proteins. Here, we used site-directed fluorescence quenching spectroscopy to identify in LeuT a substrate-induced conformational rearrangement at the inner gate conceivably leading to formation of a structural intermediate preceding transition to the inward-open conformation. The substrate-induced, Na(+)-dependent change required an intact primary substrate-binding site and involved increased water exposure of the cytoplasmic end of transmembrane segment 5. The findings were supported by simulations predicting disruption of an intracellular interaction network leading to a discrete rotation of transmembrane segment 5 and the adjacent intracellular loop 2. The magnitude of the spectroscopic response correlated inversely with the transport rate for different substrates, suggesting that stability of the intermediate represents an unrecognized rate-limiting barrier in the NSS transport mechanism.
منابع مشابه
The mechanism of a neurotransmitter:sodium symporter--inward release of Na+ and substrate is triggered by substrate in a second binding site.
Eukaryotic neurotransmitter:sodium symporters (NSSs), targets for antidepressants and psychostimulants, terminate neurotransmission by sodium-driven reuptake. The crystal structure of LeuT(Aa), a prokaryotic NSS homolog, revealed an occluded state in which one leucine and two Na(+) ions are bound, but provided limited clues to the molecular mechanism of transport. Using steered molecular dynami...
متن کاملState-dependent conformations of the translocation pathway in the tyrosine transporter Tyt1, a novel neurotransmitter:sodium symporter from Fusobacterium nucleatum.
The gene of a novel prokaryotic member (Tyt1) of the neurotransmitter:sodium symporter (NSS) family has been cloned from Fusobacterium nucleatum. In contrast to eukaryotic and some prokaryotic NSSs, which contain 12 transmembrane domains (TMs), Tyt1 contains only 11 TMs, a characteristic shared by approximately 70% of prokaryotic NSS homologues. Nonetheless upon heterologous expression in an en...
متن کاملCoupled global and local changes direct substrate translocation by neurotransmitter-sodium symporter ortholog LeuT.
Significant advances have been made in recent years in characterizing neurotransmitter:sodium symporter (NSS) family structure and function. Yet, many time-resolved events and intermediates that control the various stages of transport cycle remain to be elucidated. Whether NSSs harbor one or two sites for binding their substrates (neurotransmitters or amino acids), and what the role of the seco...
متن کاملDirect assessment of substrate binding to the Neurotransmitter:Sodium Symporter LeuT by solid state NMR
The Neurotransmitter:Sodium Symporters (NSSs) represent an important class of proteins mediating sodium-dependent uptake of neurotransmitters from the extracellular space. The substrate binding stoichiometry of the bacterial NSS protein, LeuT, and thus the principal transport mechanism, has been heavily debated. Here we used solid state NMR to specifically characterize the bound leucine ligand ...
متن کاملThe Effect of pH on Nanosized ZnO Catalyzed Degradation of 4-Chloro-2-Nitrophenol via Ozonation
This research evaluates the efficiency of nanosized ZnO in the catalytic ozonation of 4-chloro-2-nitrophenol and determines the effect of pH on heterogeneous catalytic ozonation. The combined use of ozone and ZnO catalyst leads to conversion of 98% 4-chloro-2-nitrophenol during 5 min. In addition, it was found that in ZnO catalytic ozonation, the degradation efficiency of 4-chloro-2-nitrophenol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 290 44 شماره
صفحات -
تاریخ انتشار 2015